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Abstract

Connection between electromagnetoelasticity and anisotropic elasticity is explored in the state space setting. In the
absence of electric charges and currents, the basic equations of static electromagnetoelasticity are formulated into a
state equation and an output equation, which bear a remarkable resemblance to the corresponding equations of elas-
ticity. Accordingly, the solutions for various steady-state problems of electromagnetoelasticity can be determined in
parallel to their elastic counterparts. For illustration, the generalized plane problems are treated within the context.
Exact solutions for the electromagnetoelastic fields in a half-space subjected to line loads and in an infinite plate with
an elliptic notch under extension are determined in a simple way.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a conducting media under the combined actions of mechanical and electromagnetic fields, there
occur various interacting effects in the media (Nye, 1957; Solymar, 1984; Kong, 1990). If the mechanical
responses are of primary interest, the problem may be formulated on the basis of Maxwell�s equations of
electromagnetism and equations of elasticity in which the Lorentz force due to the electromagnetic effects
is included, together with the constitutive relations that characterize the material properties of the media
(Nowacki, 1975; Parton and Kudryavtsev, 1988). Determination of analytic solutions for the mechanical
field interacting with the time varying phenomena of electromagnetism poses a formidable problem, if
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not out of the question. In the present study, we confine ourselves to the static responses of the media in
steady-state electromagnetic and mechanical fields. This class of electromagnetoelastic problems is rela-
tively simple because all the field variables are independent of time. Even so, analytic solutions are
not easy to obtain in view that the equations of anisotropic elasticity are complicated enough in them-
selves; adding the electromagnetic equations and field variables makes it more difficult. The usual solu-
tion approach is to extend the method used in obtaining the elastic solution to include the
electromagnetic effects (e.g., Wang and Shen, 2002; Gao et al., 2003; Chen and Lee, 2003; Wang
et al., 2003; Chen et al., 2004; Pan and Han, 2005). The extensions were often made in a straightforward
and ad hoc manner.

In solving the problem of electromagnetoelasticity, it is cumbersome and unwieldy to work with the indi-
vidual equations and variables, especially when the medium is arbitrarily anisotropic. If a certain link be-
tween electromagnetoelasticity and anisotropic elasticity can be found, it is conceivable that the solution for
an electromagnetoelastic problem may be determined in parallel to its elastic counterpart. Questions arise
as to whether there exists any meaningful link between them. While it is difficult to find such a link follow-
ing the usual approach, a useful connection emerges upon formulating the basic equations of static electro-
magnetoelasticity in the state space setting. A key step to bring out the connection is to form the state
vector by grouping the field variables using matrix notation and partitioning the constitutive matrix accord-
ingly. Upon defining the generalized displacements vector and the generalized stress vectors, the 3D equa-
tions of static electromagnetoelasticity can be cast neatly into two matrix equations in which all the field
variables and material constants are represented by only three vectors and four matrices. Consequently,
there is no need to deal with the equations and variables individually, and it becomes easy to derive the
state equation and the output equation for the problem. More importantly, the matrix equations bear a
remarkable resemblance to their elastic counterparts (Tarn, 2002a,b,c), differing only in the sizes and enti-
ties of the corresponding matrices. This enables us to determine the solutions for various stationary prob-
lems of electromagnetoelasticity by a simple extension of the solutions for the corresponding problems of
elasticity. In many cases, the solutions can be obtained directly by carrying over the elastic solutions. For
illustration, we treat the generalized plane problems within the context. Exact solutions for the electromag-
netoelastic field in a half-space subjected to 2D loads and in an infinite plate with an elliptical notch under
extension are determined in a simple way.
2. State space formulation

2.1. Basic equations

The constitutive relations for linear, anisotropic electromagnetoelastic media can be expressed as
rij ¼ cijklekl � ekijEk � qkijHk; ð1Þ

Di ¼ eijkejk þ �ikEk þ dikHk; ð2Þ
Bi ¼ qijkejk þ dikEk þ likH k; ð3Þ
where rij and eij are the stress and strain tensors, Di and Ei the electric displacement and electric field
strength, Bi and Hi the magnetic flux density and magnetic field strength, cijkl, ekij, qkij, �ik, dik, and lik

the elastic constants, the piezoelectric constants, the piezomagnetic constants, the dielectric constants,
the electromagnetic coupling constants, and the magnetic permeability constants, respectively. These con-
stants possess the symmetric properties
cijkl ¼ cjikl ¼ cijlk ¼ cklij; ekij ¼ ekji; qkij ¼ qkji; �ik ¼ �ki; dik ¼ dki; lik ¼ lki. ð4Þ
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Eqs. (1)–(3) encompass the constitutive equations for linear elasticity, piezoelectricity, and electromag-
netism of anisotropic media. Setting eijk = qijk = 0, Eq. (1) becomes the constitutive equations of aniso-
tropic elastic materials without polarization and magnetization; Eqs. (2) and (3) the constitutive
equations of electromagnetic materials (Kong, 1990). Setting qijk = dik = 0, Eqs. (1) and (2) become the con-
stitutive equations of piezoelectric materials (Nye, 1957); Eq. (3) the constitutive equations of magnetic
materials.

In the absence of electric currents and electric charges, Maxwell�s equations for static problems of elec-
tromagnetism reduce to
Bi;i ¼ 0; Di;i ¼ 0; ð5Þ
Ei ¼ �/;i; H i ¼ �u;i; ð6Þ
where a comma indicates differentiation with respect to the suffix variable, / and u are the electric potential
and the magnetic potential, respectively.

The strain–displacement relations are
eij ¼ ðui;j þ uj;iÞ=2; ð7Þ
where ui are the displacement components.
The equations of equilibrium are
rij;j þ F i ¼ 0; ð8Þ
where Fi denotes the body force.
For a 3D problem of a generally anisotropic material, there are 72 independent material constants and

29 field variables (three displacements, six strains, six stresses, three electric displacements, three electric
fields, three magnetic fields, and three magnetic fluxes, three electromagnetic potentials) in total. Eqs.
(1)–(3) and (5)–(8) constitute the 29 equations necessary for a unique solution. Clearly, it would be very
cumbersome to deal with the field variables and material constants individually.

2.2. Equations in matrix forms

To facilitate the ensuing formulation, we use the contracted notation (Nye, 1957) to express Eqs. (1)–(3),
in the matrix form
r11

r22

r33

r23

r13

r12

D1

D2

D3

B1

B2

B3

2666666666666666666666664

3777777777777777777777775

¼

c11 c12 c13 c14 c15 c16 e11 e21 e31 q11 q21 q31

c12 c22 c23 c24 c25 c26 e12 e22 e32 q12 q22 q32

c13 c23 c33 c34 c35 c36 e13 e23 e33 q13 q23 q33

c14 c24 c34 c44 c45 c46 e14 e24 e34 q14 q24 q34

c15 c25 c35 c45 c55 c56 e15 e25 e35 q15 q25 q35

c16 c26 c36 c46 c56 c66 e16 e26 e36 q16 q26 q36

e11 e12 e13 e14 e15 e16 ��11 ��12 ��13 �d11 �d12 �d13

e21 e22 e23 e24 e26 e26 ��12 ��22 ��23 �d12 �d22 �d23

e31 e32 e33 e34 e35 e36 ��13 ��23 ��33 �d13 �d23 �d33

q11 q12 q13 q14 q15 q16 �d11 �d12 �d13 �l11 �l12 �l13

q21 q22 q23 q24 q25 q26 �d12 �d22 �d23 �l12 �l22 �l23

q31 q32 q33 q34 q35 q36 �d13 �d23 �d33 �l13 �l23 �l33

2666666666666666666666664

3777777777777777777777775

e11

e22

e33

2e23

2e13

2e12

�E1

�E2

�E3

�H 1

�H 2

�H 3

2666666666666666666666664

3777777777777777777777775

. ð9Þ
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The formulation is greatly simplified if the field variables are grouped properly. For the problems in
Cartesian coordinates, if the x2 axis is pointed in the thickness direction, the traction vector
(r12,r22,r23), the normal electric displacement D2, and the normal magnetic flux B2 are directly associated
with the surface boundary conditions and the interfacial continuity conditions on the planes x2 = constant.
With this in mind, we group the field variables into two parts: one consists of the components associated
with the subscript 2, another consists of the remaining components. This way of grouping is particularly
useful for problems of layered media and laminated systems with the planes x2 = constant being the inter-
faces and the boundary surfaces.

Upon partitioning the constitutive matrix in accordance with the grouping, Eq. (9) can be expressed in a
concise form
s1

s2

� �
¼

C11 C12

CT
12 C22

� �
c1

c2

� �
; ð10Þ
where s1 and s2 may be regarded as the generalized stress vectors, c1 and c2 as the corresponding generalized
strains, and
s1 ¼ r13 r11 r33 D1 D3 B1 B3½ �T; s2 ¼ r12 r22 r23 D2 B2½ �T;

c1 ¼ 2e13 e11 e33 �E1 �E3 �H 1 �H 3½ �T; c2 ¼ 2e12 e22 2e23 �E2 �H 2½ �T;

C11 ¼

c55 c15 c35 e15 e35 q15 q35

c15 c11 c13 e11 e31 q11 q31

c35 c13 c33 e13 e33 q13 q33

e15 e11 e13 ��11 ��13 �d11 �d13

e35 e31 e33 ��13 ��33 �d13 �d33

q15 q11 q13 �d11 �d13 �l11 �l13

q35 q31 q33 �d13 �d33 �l13 �l33

2666666666666664

3777777777777775
;

C12 ¼

c56 c25 c45 e25 q25

c16 c12 c14 e21 q21

c36 c23 c34 e23 q23

e16 e12 e14 ��12 �d12

e36 e32 e34 ��23 �d23

q16 q12 q14 �d12 �l12

q36 q32 q34 �d23 �l23

2666666666666664

3777777777777775
; C22 ¼

c66 c26 c46 e26 q26

c26 c22 c24 e22 q22

c46 c24 c44 e24 q24

e26 e22 e24 ��22 �d22

q26 q22 q24 �d22 �l22

2666666664

3777777775
.

The strain–displacement relations can be cast into
c1

c2

� �
¼

L1u

L2u

� �
þ o2

0

u

� �
; ð11Þ
where oi stands for the partial derivative with respect to xi, u may be regarded as the generalized displace-
ment vector, and
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u ¼ u1 u2 u3 / u½ �T; L1 ¼ K1o1 þ K2o3; L2 ¼ K3o1 þ K4o3;

K1 ¼

0 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

2666666666664

3777777777775
; K2 ¼

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

2666666666664

3777777777775
;

K3 ¼

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775; K4 ¼

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775.
Substituting Eq. (11) into Eq. (10), we have
s1

s2

� �
¼
ðC11L1 þ C12L2Þu
ðCT

12L1 þ C22L2Þu

� �
þ

C12o2u

C22o2u

� �
. ð12Þ
With the Ki matrices and the differential operators L1 and L2, we can express Eqs. (5) and (8) in a single
matrix equation
o2s2 þ LT
1 s1 þ LT

2 s2 þ F ¼ 0; ð13Þ

where
F ¼ F 1 F 2 F 3 0 0½ �T.
Eqs. (12) and (13) embrace the 3D equations of static electromagnetoelasticity in full. With the basic
equations so expressed, the individual field variables and material constants are no longer in view—they
are replaced by u, s1, s2, and Cab, (a,b = 1,2). Consequently, we only need to work with three vectors
and four matrices instead of the individual variables and material constants. Moreover, the matrix equa-
tions bear a remarkable resemblance to their elastic and piezoelectric counterparts (Tarn, 2002a,c), differing
only in the sizes and entities of the corresponding matrices. As a result, connections between static electro-
magnetoelasticity and anisotropic elasticity emerge.

With reference to the state space formalism for anisotropic elasticity and piezothermoelasticity (Tarn,
2002a,b,c), choosing the generalized displacement vector u and the generalized stress vector s2 to form
the state vector, we can write down immediately the state equation and output equation for static electro-
magnetoelasticity as follows:
o

ox2

u

s2

� �
¼ D11 C�1

22

D21 DT
11

" #
u

s2

� �
�

0

F

� �
; ð14Þ

s1 ¼ eC11L1 C12C�1
22

� � u

s2

� �
; ð15Þ
where
D11 ¼ �C�1
22 CT

12L1 � L2; D21 ¼ �LT
1
eC11L1; eC11 ¼ C11 � C12C�1

22 CT
12.
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For a specific problem being solved the task is to determine the state vector that satisfies the state equa-
tion together with the boundary conditions. Once the state vector is determined, all the unknown field vari-
ables follow from the output equation. We are now in a better position to deal with various problems.
3. Generalized plane problems

When a body of uniform cross-section is subjected to surface loadings that do not vary in the x3-axis, all
the field variables are independent of x3 except for the displacement components. This class of problems is
referred to as the generalized plane problem in anisotropic elasticity (Lekhnitskii, 1981). The general
expressions of the displacement components take the form
u1

u2

u3

264
375 ¼ uðx1; x2Þ

vðx1; x2Þ
wðx1; x2Þ

264
375þ e

0

0

x3

264
375þ # �x2x3

x1x3

0

264
375þ b1

�x2
3=2

0

x1x3

264
375þ b2

0

�x2
3=2

x2x3

264
375; ð16Þ
where u, v, and w are unknown functions of x1 and x2, the rigid body displacements have been excluded, the
constant e is a uniform extension, # is associated with the curvature due to twisting, b1 and b2 are associated
with the curvatures due to bending.

For a combined loading at the ends, the constants e, #, b1, and b2 can be determined from the end con-
ditions that require the stress resultants over the cross section A reduce to an axial force P3, a torque M3,
and bi-axial bending moments M1 and M2:
Z

A
ðH1s1 þH2s2Þdx1 dx2 ¼ P; ð17Þ
where
H1 ¼

0 0 1 0 0 0 0

0 0 x2 0 0 0 0

0 0 �x1 0 0 0 0

�x2 0 0 0 0 0 0

26664
37775; H2 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 x1 0 0

26664
37775; P ¼

P 3

M1

M2

M3

26664
37775.
Alternatively, we may solve various cases of simple loadings and obtain the solution for the combined
loading by superposition. As there is a one to one correspondence between e, #, b1, b2 and the prescribed
end loads, these constants may be regarded as known a priori.

On substituting Eq. (16) in Eqs. (14) and (15), the state equation and the output equation become
o

ox2

~u

s2

� �
¼ �C�1

22 A1o1 C�1
22

�A2o11 �AT
1 C�1

22 o1

" #
~u

s2

� �
�

p1

p2

� �
�

0

f

� �
; ð18Þ

s1 ¼ eC11K1o1 C12C�1
22

� � ~u

s2

� �
þ eC11½ðeþ b1x1 þ b2x2Þk1 � #x2k2�; ð19Þ
where
~u ¼ u v w / u½ �T; f ¼ F 1 F 2 0 0 0½ �T;
A1 ¼ CT

12K1 þ C22K3; A2 ¼ KT
1
eC11K1;

p1 ¼ C�1
22 CT

12½ðeþ b1x1 þ b2x2Þk1 � #x2k2� þ #x1k3;

p2 ¼ b1 ~c13 0 ~c35 ~e13 ~q13½ �T; k1 ¼ 0 0 1 0 0 0 0½ �T;
k2 ¼ 1 0 0 0 0 0 0½ �T; k3 ¼ 0 0 1 0 0½ �T.
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We seek the homogeneous solution of Eq. (18) of the form
~u ¼ UF ðzÞ; s2 ¼ SF 0ðzÞ; ð20Þ
where U and S are constant vectors, each has five components; F(z) is an unknown function of complex
variables, F

0
(z) = dF(z)/dz, z = x1 + px2, p is a constant parameter to be determined.

Substituting Eq. (20) in Eq. (18) yields the eigen relation
�C�1
22 A1 C�1

22

�A2 �AT
1 C�1

22

" #
U

S

� �
¼ p

U

S

� �
; ð21Þ
where p is the eigenvalue, [U,S]T, is the eigenvector. For a given material the eigenvalues and the associated
eigenvectors can be determined using Mathematica or MATLAB.

Expressing S in terms of U using Eq. (21)1, we have
S ¼ ðA1 þ pC22ÞU. ð22Þ
Substituting Eq. (22) in Eq. (21)2 leads to
½A3 þ pðA1 þ AT
1 Þ þ p2C22�U ¼ 0; ð23Þ
where
A3 ¼ KT
1 C11K1 þ KT

1 C12K3 þ KT
3 CT

12K1 þ KT
3 C22K3.
Non-trivial solution to Eq. (23) exists if and only if the determinant of the coefficient matrix vanishes
jA3 þ pðA1 þ AT
1 Þ þ p2C22j ¼ 0. ð24Þ
By setting eij = qij = 0, Eq. (24) reduces to the sextic equation and Eq. (21) to the eigen relation in the
Stroh formalism of anisotropic elasticity (Ting, 1996). Analogous to the formulation in anisotropic elastic-
ity, it can be shown that the p cannot be real by virtue of the positive-definiteness of the free energy, and
there are five pairs of complex conjugate p. Denote the eigenvalues and the associated eigenvectors by
pk ¼ ak þ ibk; pkþ5 ¼ �pk ¼ ak � ibk; bk > 0; ð25Þ
Ukþ5 ¼ Uk; Skþ5 ¼ Sk; k ¼ 1� 5; ð26Þ
where i is the imaginary number, ak and bk are real.
There follows:
~u ¼ 2Re
X5

k¼1

UkF kðzkÞ
( )

; ð27Þ

s1 ¼ 2Re
X5

k¼1

ðA4 þ pkC12ÞUkF 0kðzkÞ
( )

; ð28Þ

s2 ¼ 2Re
X5

k¼1

ðA1 þ pkC22ÞUkF 0kðzkÞ
( )

; ð29Þ
where Uk is the eigenvector associated with the eigenvalue pk, zk = x1 + pkx2, and
A4 ¼ C11K1 þ C12K3.
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The particular solution of Eq. (18) is
~u ¼ a1x2
1=2þ a2x1x2 þ a3x2

2=2; ð30Þ
s2 ¼ eCT

12k1; ð31Þ
s1 ¼ eC11k1 � #eC11k2x2 þ eC11½ðK1a1 þ b1k1Þx1 þ ðK1a2 þ b2k1Þx2�; ð32Þ
assuming constant body force, where the coefficients a1,a2,and a3 are determined from
KT
1
eC11K1a1 ¼ �p2 � f; ð33Þ

A1a1 þ C22a2 ¼ �b1CT
12k1 � #C22k3; ð34Þ

A1a2 þ C22a3 ¼ �b2CT
12k1 þ #CT

12k2. ð35Þ
Thus, the general solution of Eq. (18) is
u ¼ 2Re
X5

k¼1

UkF kðzkÞ
( )

þ a1x2
1=2þ a2x1x2 þ a3x2

2=2þ bu; ð36Þ

s1 ¼ 2Re
X5

k¼1

ðA4 þ pkC12ÞUkF 0kðzkÞ
( )

þ eC11k1 � #eC11k2x2

þ eC11½ðK1a1 þ b1k1Þx1 þ ðK1a2 þ b2k1Þx2�; ð37Þ

s2 ¼ 2Re
X5

k¼1

ðA1 þ pkC22ÞUkF 0kðzkÞ
( )

þ eCT
12k1; ð38Þ
in which
bu ¼ �b1x2
3=2� #x2x3 �b2x2

3=2þ #x1x3 ðb1x1 þ b2x2 þ eÞx3 0 0
� �T

.

The complex functions Fk(zk) in Eqs. (36)–(38) for a specific problem are to be determined using the pre-
scribed boundary conditions.
4. Electromagnetoelastic field in a half-space

The solution for the problem of an anisotropic elastic half-space under the line loads was given in Sec-
tion 28 of Lekhnitskii (1981). Here we consider the electromagnetoelastic field in a half-space subjected to
line loads and prescribed electromagnetic conditions on the half-space boundary. Lekhnitskii�s solution can
be carried over to the present case in a simple manner without working with the individual equations and
variables.

The mechanical boundary conditions of the problem are
r22 ¼ Nðx1Þ; r12 ¼ T ðx1Þ; r23 ¼ 0 on x2 ¼ 0; ð39Þ

where N(x1) and T(x1) are the prescribed normal force and shearing force.

In the absence of electric charges and currents, the electromagnetic boundary conditions require that
either the normal component of the electric charge or the electric potential and either the normal magnetic
flux or the magnetic potential be prescribed on the boundary
either D2 ¼ feðx1Þ or / ¼ geðx1Þ on x2 ¼ 0; ð40Þ
either B2 ¼ fmðx1Þ or u ¼ gmðx1Þ on x2 ¼ 0; ð41Þ
where fe(x1), fm(x1), ge(x1) and gm(x1) are prescribed functions of x1.
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The boundary conditions specified by Eqs. (39)–(41) expressed in the present context are
s2ðx1; 0Þ ¼ fðx1Þ; ð42Þ
Kts2ðx1; 0Þ ¼ gtðx1Þ;Keuðx1; 0Þ ¼ guðx1Þ; ð43Þ
where
fðx1Þ ¼ T ðx1Þ Nðx1Þ 0 feðx1Þ fmðx1Þ½ �T;
gtðx1Þ ¼ T ðx1Þ Nðx1Þ 0½ �T; guðx1Þ ¼ geðx1Þ gmðx1Þ½ �T;

Kt ¼
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

264
375; Ke ¼

0 0 0 1 0

0 0 0 0 1

� �
.

First, we consider the boundary condition given by Eq. (42). Substituting Eq. (38) into Eq. (42) gives
2Re
X5

k¼1

ðA1 þ pkC22ÞUkF 0kðx1Þ
( )

¼ fðx1Þ � eCT
12k1. ð44Þ
Applying the Cauchy integral formula of analytic functions in a half plane (Lekhnitskii, 1981) to Eq. (44)
yields a system of five linear algebraic equations for the five unknown F 0kðzÞ as follows:
X5

k¼1

ðA1 þ pkC22ÞUkF 0kðzÞ ¼ �
1

2pi

Z 1

�1

fðx1Þ � eCT
12k1

x1 � z
dx1. ð45Þ
Next, we consider the boundary condition given by Eq. (43). Substitution of Eqs. (36) and (38) in Eq.
(43) gives
2Re
X5

k¼1

KtðA1 þ pkC22ÞUkF 0kðx1Þ
( )

¼ htðx1Þ; ð46Þ

2Re
X5

k¼1

KeUkF kðx1Þ
( )

¼ huðx1Þ; ð47Þ
where
htðx1Þ ¼ gtðx1Þ � eKtC
T
12k1; huðx1Þ ¼ guðx1Þ � Kea1x2

1=2.
Applying the Cauchy integral formula to Eqs. (46) and (47) yields
X5

k¼1

KtðA1 þ pkC22ÞUkF 0kðzÞ ¼ �
1

2pi

Z 1

�1

htðx1Þ
x1 � z

dx1; ð48Þ

X5

k¼1

KeUkF kðzÞ ¼ �
1

2pi

Z 1

�1

huðx1Þ
x1 � z

dx1. ð49Þ
Observing that the unknowns in Eq. (48) are F 0kðzÞ, whereas the unknowns in Eq. (49) are Fk(z), we dif-
ferentiate Eq. (49) with respect to z to obtain
X5

k¼1

KeUkF 0kðzÞ ¼ �
1

2pi

Z 1

�1

huðx1Þ
ðx1 � zÞ2

dx1. ð50Þ
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Eq. (48) and (50) constitute a set of five algebraic equations for the five unknowns F 0kðzÞ. Upon solving
for F 0kðzÞ from Eq. (45) or from Eqs. (48) and (50), depending on the boundary condition being considered,
integrating F 0kðzÞ with respect to z and replacing the variable z by zk, we obtain the analytic functions Fk(zk)
for the problem. All the field variables follow from Eqs. (36)–(38) subsequently.

We note in passing that the displacement boundary condition can be considered in a similar fashion. The
solutions for the elastic and piezoelectric counterparts (Lekhnitskii, 1981; Tarn, 2002c) are reproduced by
setting eij = qij = 0, k = 1–3; and qij = lij = 0, k = 1–4, respectively.
5. Electromagnetoelastic field in a notched plate

Disturbance of the uniform field in an infinite plate by the presence of a notch is a classical problem of
anisotropic elasticity (Savin, 1961; Lekhnitskii, 1981). Here we consider the electromagnetoelastic field in a
notched plate under uniform extension.

When an infinite plate is subjected to uniform extension, the internal field is uniform. In the presence of a
notch, the uniform field is disturbed. The disturbance can be determined by superposing on the uniform
field an internal field derived from an auxiliary problem in which the negative of the traction, the normal
electric displacement, and the normal magnetic flux resulted from the uniform field is prescribed on the
notch contour. The superposition annihilates the loading on the notch boundary and makes the notch free
of external loads, thus producing the solution to the original problem.

Consider the notched plate under uniform extension e0 in the x1 direction at infinity. The mechanical
boundary conditions on the notch boundary are traction-free. The electromagnetic boundary conditions
on the notch boundary are assumed to be electromagnetic insulated such that the normal electric displace-
ment and the normal magnetic flux are zero. The condition at infinity is
e11 ¼ e0; eij ¼ 0 ði; j 6¼ 1Þ; / and u ¼ constant: ð51Þ
The uniform field in an infinite plate under uniform extension is
r11 r22 r33 r23 r13 r12½ � ¼ e0 c11 c12 c13 c14 c15 c16½ �; ð52Þ
D1 D2 D3 B1 B2 B3½ � ¼ e0 e11 e21 e31 q11 q21 q31½ �; ð53Þ
which, in the present context, are given by
s1 ¼ e0 c15 c11 c13 e11 e31 q11 q31½ �T; ð54Þ
s2 ¼ e0 c16 c12 c14 e21 q21½ �T. ð55Þ
The auxiliary problem requires that the notch boundary be subjected to
t1

t2

t3

264
375 ¼ �e0

c11 c16

c16 c12

c15 c14

264
375 cos h

sin h

� �
;

Dn

Bn

� �
¼ �e0

e11 e21

q11 q21

� �
cos h

sin h

� �
; ð56Þ
where ti, Dn, and Bn denote the traction components, the normal electric displacement, and the normal
magnetic flux, respectively, h is the angle measured counter-clockwise between the x1-axis and the outward
normal at a point along the notch boundary.

By using Eqs. (27)–(29), we can express the traction, the normal electric displacement, and the normal
magnetic flux along the notch contour in terms of the analytic functions as follows:



J.-Q. Tarn, W.Q. Chen / International Journal of Solids and Structures 43 (2006) 4957–4970 4967
t1 ¼ nrðKT
1 s1 þ KT

3 s2Þ ¼ �2Re
X5

k¼1

nrðA3 þ pkA5ÞUkF 0kðzkÞ
( )

; ð57Þ

t2 ¼ nrs2 ¼ 2Re
X5

k¼1

nrðA1 þ pkC22ÞUkF 0kðzkÞ
( )

; ð58Þ

t3 ¼ nrðKT
2 s1 þ KT

4 s2Þ ¼ 2Re
X5

k¼1

nrðA6 þ pkA7ÞUkF 0kðzkÞ
( )

; ð59Þ

Dn ¼ neðKT
5 s1 þ KT

7 s2Þ ¼ 2Re
X5

k¼1

neðA8 þ pkA9ÞUkF 0kðzkÞ
( )

; ð60Þ

Bn ¼ neðKT
6 s1 þ KT

8 s2Þ ¼ 2Re
X5

k¼1

neðA10 þ pkA11ÞUkF 0kðzkÞ
( )

; ð61Þ
where
KT
5 ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

26666664

37777775; KT
6 ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

26666664

37777775;

KT
7 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

26666664

37777775; KT
8 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

26666664

37777775;

nr ¼ cos h sin h 0 0 0½ �; ne ¼ 0 0 0 cos h sin h½ �;
A5 ¼ KT

1 C12 þ KT
3 C22; A6 ¼ KT

2 A4 þ KT
4 A1;

A7 ¼ KT
2 C12 þ KT

4 C22; A8 ¼ KT
5 A4 þ KT

7 A1;

A9 ¼ KT
5 C12 þ KT

7 C22; A10 ¼ KT
6 A4 þ KT

8 A1; A11 ¼ KT
6 C12 þ KT

8 C22.
In order to use the boundary conditions to determine the analytic functions for the auxiliary problem,
the notch boundary must be expressed properly in terms of the complex variables. This hinges on the exis-
tence of the conformal mapping functions that transform the exterior of the notch onto the exterior of a
unit circle for all the complex variables zk, k = 1–5. It has been shown (Wang and Tarn, 1993) that the con-
formal mapping in the entire region outside the unit circle is possible only for an elliptic hole in an aniso-
tropic elastic medium. In the present case, the contour of the elliptic hole is transformed onto a unit circle
by
zk ¼ mknk þ �mkn
�1
k ; ð62Þ
where
mk ¼ ða� ipkbÞ=2; �mk ¼ ðaþ ipkbÞ=2.
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The inverse relation of Eq. (62) is
nk ¼
zk þ ðz2

k � 4mk �mkÞ1=2

2mk
. ð63Þ
The mapping functions map the exterior of an ellipse
x2
1

a2
þ x2

2

b2
¼ 1; x1 ¼ a cos h; x2 ¼ b sin h ð64Þ
for all zk in the z plane onto the exterior of a unit circle: n = nk = eih in the n plane, making it possible for us
to use the Cauchy integral formula to determine the analytic functions for the problem.

Upon imposing Eq. (56) on Eqs. (57)–(61), multiplying both sides of the equations by (2pi)�1dn/(n � z),
integrating them clockwise around the unit circle, applying the Cauchy integral formula of analytic func-
tions for a unit circle in the n plane and using
F 0kðzÞ ¼ F 0kðnkÞ
dnk

dzk
¼ nk

mknk � �mkn
�1
k

F 0kðnkÞ; ð65Þ
there follows:
X5

k¼1

gT
r ðA3 þ pkA5ÞUkF 0kðzÞ ¼ �

e0

p

Z 2p

0

c11 cos hþ c16 sin h
eih � z

eihdh; ð66Þ

X5

k¼1
gT

r ðA1 þ pkC22ÞUkF 0kðzÞ ¼ �
e0

p

Z 2p

0

c16 cos hþ c12 sin h
eih � z

eihdh; ð67Þ

X5

k¼1

gT
r ðA6 þ pkA7ÞUkF 0kðzÞ ¼ �

e0

p

Z 2p

0

c15 cos hþ c14 sin h
eih � z

eihdh; ð68Þ

X5

k¼1

gT
e ðA8 þ pkA9ÞUkF 0kðzÞ ¼ �

e0

p

Z 2p

0

e11 cos hþ e21 sin h
eih � z

eihdh; ð69Þ

X5

k¼1

gT
e ðA10 þ pkA11ÞUkF 0kðzÞ ¼ �

e0

p

Z 2p

0

q11 cos hþ q21 sin h
eih � z

eihdh; ð70Þ
where
gr ¼
z

ðmkz� �mkz�1Þ

z�1 þ z

iðz�1 � zÞ
0

0

0

26666664

37777775; ge ¼
z

ðmkz� �mkz�1Þ

0

0

0

z�1 þ z

iðz�1 � zÞ

26666664

37777775.
Eqs. (66)–(70) are five linear algebraic equations for the five unknowns F 0kðzÞ. After solving F 0kðzÞ and
integrating it with respect to z and replacing z by zk, we obtain the analytic functions Fk(zk) for the auxiliary
problem. The auxiliary internal field are determined by substituting Fk(zk) into Eqs. (27)–(29).

Superposition of the uniform field and the auxiliary internal field yields the electromagnetoelastic field in
the infinite plate containing an elliptic notch
s1 ¼ e0 c15 c11 c13 e11 e31 q11 q31½ �T þ 2Re
X5

k¼1

ðA4 þ pkC12ÞUkF 0kðzkÞ
( )

; ð71Þ

s2 ¼ e0 c16 c12 c14 e21 q21½ �T þ 2Re
X5

k¼1

ðA1 þ pkC22ÞUkF 0kðzkÞ
( )

. ð72Þ
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Again, by setting eij = qij = 0, k = 1–3, and qij = lij = 0, k = 1–4, respectively, the solutions of the associ-
ated problems of anisotropic elasticity (Lekhnitskii, 1981) and piezoelectricity (Tarn, 2002c) are recovered.

In closing, we note that a series solution for the problem may be found, following the same line as given
in Lekhnitskii (1981), by representing the analytic functions in the exterior of a unit circle in the n plane in
the form of Laurent�s series
F kðnÞ ¼ bk ln nþ
X1
n¼0

ankn
�n; n ¼ eih; ð73Þ
in which bk and ank are determined by comparing the coefficients on both sides of the algebraic equations
resulting from the notch boundary conditions.
6. Concluding remarks

We have formulated the basic equations of static electromagnetoelasticity in the state space setting and
derived a state equation and an output equation that bear a remarkable resemblance to their elastic coun-
terparts, making it possible to solve various stationary problems of electromagnetoelasticity in parallel to
the associated problems of anisotropic elasticity. For illustration, we have determined the exact solutions
for two classes of problems by simple extension of the corresponding elastic solutions. Other problems of
electromagnetoelasticity can be treated as well following the same line.

The connection between static electromagnetoelasticity and anisotropic elasticity has been found by
grouping the field variables properly and partitioning the constitutive matrix accordingly. In the formula-
tion we have grouped the field variables in such a manner that the derivatives with respect to x2 are taken to
the left-hand side of the state equation. The way of grouping is not unique. For other groupings the forms
of the state equation and output equation remain unchanged, only the matrices Cab and Ki need to be rede-
fined. It has been shown in the state space formalism for anisotropic elasticity (Tarn, 2002a) that an alter-
native formulation based on grouping the stresses into inplane and antiplane components results in a state
equation and an output equation different in form but same in effect. The statement stands in the present
case.
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