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Abstract

Connection between electromagnetoelasticity and anisotropic elasticity is explored in the state space setting. In the
absence of electric charges and currents, the basic equations of static electromagnetoelasticity are formulated into a
state equation and an output equation, which bear a remarkable resemblance to the corresponding equations of elas-
ticity. Accordingly, the solutions for various steady-state problems of electromagnetoelasticity can be determined in
parallel to their elastic counterparts. For illustration, the generalized plane problems are treated within the context.
Exact solutions for the electromagnetoelastic fields in a half-space subjected to line loads and in an infinite plate with
an elliptic notch under extension are determined in a simple way.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a conducting media under the combined actions of mechanical and electromagnetic fields, there
occur various interacting effects in the media (Nye, 1957; Solymar, 1984; Kong, 1990). If the mechanical
responses are of primary interest, the problem may be formulated on the basis of Maxwell’s equations of
electromagnetism and equations of elasticity in which the Lorentz force due to the electromagnetic effects
is included, together with the constitutive relations that characterize the material properties of the media
(Nowacki, 1975; Parton and Kudryavtsev, 1988). Determination of analytic solutions for the mechanical
field interacting with the time varying phenomena of electromagnetism poses a formidable problem, if
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not out of the question. In the present study, we confine ourselves to the static responses of the media in
steady-state electromagnetic and mechanical fields. This class of electromagnetoelastic problems is rela-
tively simple because all the field variables are independent of time. Even so, analytic solutions are
not easy to obtain in view that the equations of anisotropic elasticity are complicated enough in them-
selves; adding the electromagnetic equations and field variables makes it more difficult. The usual solu-
tion approach is to extend the method used in obtaining the elastic solution to include the
electromagnetic effects (e.g., Wang and Shen, 2002; Gao et al., 2003; Chen and Lee, 2003; Wang
et al., 2003; Chen et al., 2004; Pan and Han, 2005). The extensions were often made in a straightforward
and ad hoc manner.

In solving the problem of electromagnetoelasticity, it is cumbersome and unwieldy to work with the indi-
vidual equations and variables, especially when the medium is arbitrarily anisotropic. If a certain link be-
tween electromagnetoelasticity and anisotropic elasticity can be found, it is conceivable that the solution for
an electromagnetoelastic problem may be determined in parallel to its elastic counterpart. Questions arise
as to whether there exists any meaningful link between them. While it is difficult to find such a link follow-
ing the usual approach, a useful connection emerges upon formulating the basic equations of static electro-
magnetoelasticity in the state space setting. A key step to bring out the connection is to form the state
vector by grouping the field variables using matrix notation and partitioning the constitutive matrix accord-
ingly. Upon defining the generalized displacements vector and the generalized stress vectors, the 3D equa-
tions of static electromagnetoelasticity can be cast neatly into two matrix equations in which all the field
variables and material constants are represented by only three vectors and four matrices. Consequently,
there is no need to deal with the equations and variables individually, and it becomes easy to derive the
state equation and the output equation for the problem. More importantly, the matrix equations bear a
remarkable resemblance to their elastic counterparts (Tarn, 2002a,b,c), differing only in the sizes and enti-
ties of the corresponding matrices. This enables us to determine the solutions for various stationary prob-
lems of electromagnetoelasticity by a simple extension of the solutions for the corresponding problems of
elasticity. In many cases, the solutions can be obtained directly by carrying over the elastic solutions. For
illustration, we treat the generalized plane problems within the context. Exact solutions for the electromag-
netoelastic field in a half-space subjected to 2D loads and in an infinite plate with an elliptical notch under
extension are determined in a simple way.

2. State space formulation
2.1. Basic equations

The constitutive relations for linear, anisotropic electromagnetoelastic media can be expressed as

0ij = Cijmtr — exijEr — g, (1)
D; = ejej + ek + dyHy, (2)
Bi = qipepn + duEr + pyHy, (3)

where g; and ¢; are the stress and strain tensors, D; and E; the electric displacement and electric field
strength, B; and H; the magnetic flux density and magnetic field strength, c;i, exij, Gry> €i> ik, and p
the elastic constants, the piezoelectric constants, the piezomagnetic constants, the dielectric constants,
the electromagnetic coupling constants, and the magnetic permeability constants, respectively. These con-
stants possess the symmetric properties

Cijtl = Cjiki = Cijik = Cklijs  €kij = €kjiy  rij = Qgji> ik = €kis dix = duy Wy = My (4)
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Egs. (1)—(3) encompass the constitutive equations for linear elasticity, piezoelectricity, and electromag-
netism of anisotropic media. Setting e;x = g, = 0, Eq. (1) becomes the constitutive equations of aniso-
tropic elastic materials without polarization and magnetization; Egs. (2) and (3) the constitutive
equations of electromagnetic materials (Kong, 1990). Setting ¢, = dy = 0, Egs. (1) and (2) become the con-
stitutive equations of piezoelectric materials (Nye, 1957); Eq. (3) the constitutive equations of magnetic
materials.

In the absence of electric currents and electric charges, Maxwell’s equations for static problems of elec-
tromagnetism reduce to

Bzﬁ,i = O’ D[«,i = Oa (5)
E; = _¢,i’ H; = —Q (6)
where a comma indicates differentiation with respect to the suffix variable, ¢ and ¢ are the electric potential

and the magnetic potential, respectively.
The strain—displacement relations are

&y = (uij +u;:)/2, (7)

where u; are the displacement components.
The equations of equilibrium are

Gl‘j’j+F[:O, (8)

where F; denotes the body force.

For a 3D problem of a generally anisotropic material, there are 72 independent material constants and
29 field variables (three displacements, six strains, six stresses, three electric displacements, three electric
fields, three magnetic fields, and three magnetic fluxes, three electromagnetic potentials) in total. Egs.
(1)-(3) and (5)—(8) constitute the 29 equations necessary for a unique solution. Clearly, it would be very
cumbersome to deal with the field variables and material constants individually.

2.2. Equations in matrix forms

To facilitate the ensuing formulation, we use the contracted notation (Nye, 1957) to express Egs. (1)—(3),
in the matrix form

(o1 ] [ci1 ¢z ¢z cua C15 Cie en € €3 91 9> gz | [en ]
02 Cla Cx €3 Cy C5 C6 €12 € €3 912 qxn q3 &2
033 Ci3 €3 €33 C34 C35 C36 €13 €23 €33 q13 qr3 q33 €33
023 Cl4g Co4 C3q Caq C45 C46 €14 €24 €34 914 q24 q34 2e53
013 Cls €5 C35 C45 Cs55 Cs6 €15 €; €s3s qis q>s q3s 2e13
0| €6 C6 €36 Cia Cs6 Ce6  €l6 € €36 916 92 936 2ep )
D, e;y en e ey es e —€y —€p —€3 —diy —din —dp —E
D, e en exn ey ex es —€r —€n —€3 —dp —dpn —dn||—E
Ds e exn e ey e ey —€3 —€3 —€3 —diz —dp —dyp —kE;
B, 9n 91 93 9a Gis Gie —du —din —diz —p —n —H —H,
B, 9 9 9 9u G5 G —di —dn —dyn —pp —fyn —l —H>

LB3 | L9351 93 93 9w 93 Gz —din —dun —dy —py3 —py —p3d L—H3
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The formulation is greatly simplified if the field variables are grouped properly. For the problems in
Cartesian coordinates, if the x, axis is pointed in the thickness direction, the traction vector
(012,022, 023), the normal electric displacement D», and the normal magnetic flux B, are directly associated
with the surface boundary conditions and the interfacial continuity conditions on the planes x, = constant.
With this in mind, we group the field variables into two parts: one consists of the components associated
with the subscript 2, another consists of the remaining components. This way of grouping is particularly
useful for problems of layered media and laminated systems with the planes x, = constant being the inter-
faces and the boundary surfaces.

Upon partitioning the constitutive matrix in accordance with the grouping, Eq. (9) can be expressed in a
concise form

T1 Cu Cully
o= le el "
T2 Ch Cxlln
where 7| and 7, may be regarded as the generalized stress vectors, y; and 7, as the corresponding generalized
strains, and

T T
t1=[o3 on o3 Dy Dy B Bi], m=[on 0n 0xn D, B,

v =1[25 en &3 —Ei —Ey —H, —H3]', y,=[2n &n 285 —E» —H),

Css Cl15 C35 €5 €3s 915 q3s
Ci5 ¢ Ci3  eq €3] 91 q31
C3s €13 €33 e €33 913 q33
Chi=|es en ez —en —e3 —dy —dpys|,
es ey ey —e€3 —e€3 —diz —dn
s qu Gz —dun —diz —py —s
[ 935 931 93 —diz —dyw —ly3 — s ]

Cs6 €25  C4s €5 q»s
Cl6 Cr2 Cia €31 B3 [cos 26 cas e 9 1
C C23 C34 €3 92 C Cxn Cu €x q»
Cho=|es en es —€n —dp 5 Cn=|cs cu cu €24 qr4
e en ey —e3 —dxy ex en ey —€p —dn
96 92 Gia —diz —fp [ 92 92 Qs —dn —ly ]
[ 936 9% qaa —dxn —los ]

The strain—displacement relations can be cast into

Liu 0
)= L]+ ola) a
Y2 Lou u
where O; stands for the partial derivative with respect to x,, u may be regarded as the generalized displace-
ment vector, and
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u=[u u us ¢ QD]T7 L, = K0, + K03, L, =K;0; + K403,

00100 10000
1000 0 00000
00000 00100
Ki=|0 00 10|, Kk=|0 000 0],
00000 00010
000 0 1 00000
00 0 0 0] 100 0 0 1]
01 0 0 0] 00 0 0 0]
0000 0 00000
Ki=|0 00 0 0|, Ke=|0 1 0 0 0
0000 0 00000
00 0 0 0] 100 0 0 0]

Substituting Eq. (11) into Eq. (10), we have
|:71:| _ |:(C11L1 + C12L2)u:| |:C1262u:|
T2 (CT2L1 + C22L2)ll szazu ’

With the K; matrices and the differential operators L; and L,, we can express Egs. (5) and (8) in a single
matrix equation

O+ Lin +Lin, +F=0, (13)

(12)

where
F=[F, F, F; 0 0]

Egs. (12) and (13) embrace the 3D equations of static electromagnetoelasticity in full. With the basic
equations so expressed, the individual field variables and material constants are no longer in view—they
are replaced by u, 7y, 75, and C,, (o, f =1,2). Consequently, we only need to work with three vectors
and four matrices instead of the individual variables and material constants. Moreover, the matrix equa-
tions bear a remarkable resemblance to their elastic and piezoelectric counterparts (Tarn, 2002a,c), differing
only in the sizes and entities of the corresponding matrices. As a result, connections between static electro-
magnetoelasticity and anisotropic elasticity emerge.

With reference to the state space formalism for anisotropic elasticity and piezothermoelasticity (Tarn,
2002a,b,c), choosing the generalized displacement vector u and the generalized stress vector t, to form
the state vector, we can write down immediately the state equation and output equation for static electro-
magnetoelasticity as follows:

i{u] D C;T; [u}_{oy (14)
aX2 T2 D21 Dll T2 F
~ u
T = [C“L] Clzcgzl] |:12:|, (15)
where

D =-C,CLL —L,, Dy =-L{CyL;, Cy =Cy —CpCy,Ch.
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For a specific problem being solved the task is to determine the state vector that satisfies the state equa-
tion together with the boundary conditions. Once the state vector is determined, all the unknown field vari-
ables follow from the output equation. We are now in a better position to deal with various problems.

3. Generalized plane problems

When a body of uniform cross-section is subjected to surface loadings that do not vary in the x3-axis, all
the field variables are independent of x3 except for the displacement components. This class of problems is
referred to as the generalized plane problem in anisotropic elasticity (Lekhnitskii, 1981). The general
expressions of the displacement components take the form

u u(xy,x2) 0 —X2X3 —x3/2 0
u | = |o(x;,x) | +€|0 | +9] xix; +b |0 +by| —x3/2 |, (16)
Uus W(X],)Cz) X3 0 X1X3 X2X3

where u, v, and w are unknown functions of x; and x,, the rigid body displacements have been excluded, the
constant ¢ is a uniform extension, ¥ is associated with the curvature due to twisting, b; and b, are associated
with the curvatures due to bending.

For a combined loading at the ends, the constants ¢, ¥, by, and b, can be determined from the end con-
ditions that require the stress resultants over the cross section A4 reduce to an axial force P, a torque M3,
and bi-axial bending moments M; and M>:

/(Hlfl + Hyt;)dx; dx, =P, (17)
4
where
0 0 1 00 0 O 00 0 0O Ps
0 0 x 0 0 0 O 00 0 0O M,
0 0 —x 0 0 0 O 0O 0 0 0 O M,
-x, 0 0 0 0 0 O 0 0 x 0 O M

Alternatively, we may solve various cases of simple loadings and obtain the solution for the combined
loading by superposition. As there is a one to one correspondence between &, ¢, by, b, and the prescribed
end loads, these constants may be regarded as known a priori.

On substituting Eq. (16) in Egs. (14) and (15), the state equation and the output equation become

@m _|-CAe ¢ {ﬁ } ~ m - m (8)
ox; [ 1, —A0 —A[CLY |l P £
~ u ~
7 = [Cy K9 C,Cy) ] L ] + Cii[(e + bixy + boxy k) — Uxsks], (19)
2
where

i=[u v w ¢ o], f=[F F, 0 0 0],

A =CLK, +CuK;, Ay = KlTénKl,

p; = Coy CL[(e + bixy + byxy)ky — Pxaks] + Vx ks,

p,=biléis 0 &s es Gl kk=[0 0 1 0 0 0 0],
ky=[1 0 0 0 0 0 0], ks=[0 0 1 0 0]".
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We seek the homogeneous solution of Eq. (18) of the form
u=UF(z), 1, =SF'(z), (20)

where U and S are constant vectors, each has five components; F(z) is an unknown function of complex
variables, F(z) = dF(z)/dz, z = x; + px,, p is a constant parameter to be determined.
Substituting Eq. (20) in Eq. (18) yields the eigen relation

SR

where p is the eigenvalue, [U,S]", is the eigenvector. For a given material the eigenvalues and the associated
eigenvectors can be determined using Mathematica or MATLAB.
Expressing S in terms of U using Eq. (21);, we have

—CLA G
—A; _Achz_zl

S = (A + pCy,)U. (22)
Substituting Eq. (22) in Eq. (21), leads to
[As + p(A; + A) + p*Cy)U = 0, (23)
where
A; =K[C K| + K[ CpK; + K CLK; + K CKs.
Non-trivial solution to Eq. (23) exists if and only if the determinant of the coefficient matrix vanishes
A3 + p(A; + A]) + p°Ca| = 0. (24)

By setting e; = g;; = 0, Eq. (24) reduces to the sextic equation and Eq. (21) to the eigen relation in the
Stroh formalism of anisotropic elasticity (Ting, 1996). Analogous to the formulation in anisotropic elastic-
ity, it can be shown that the p cannot be real by virtue of the positive-definiteness of the free energy, and
there are five pairs of complex conjugate p. Denote the eigenvalues and the associated eigenvectors by

De =k +ibg,  prys =Py = ax —ibg, b >0, (25)
Uk+5 = Uka Sk+5 = §k7 k=1- 57 (26)

where 7 is the imaginary number, ¢, and b, are real.
There follows:

i = 2Re{25: Uka(zk)}, (27)

T = ZRC{XS:(A4 +ka12)UkF;( (Zk) }, (28)

=1
5
Ty = ZRS{Z(AI +ka22)UkF;{(Zk) }7 (29)
k=1
where Uy is the eigenvector associated with the eigenvalue py, z;, = x| + pix,, and
Ay = CK; + C2Ks.



4964 J.-Q. Tarn, W.Q. Chen [ International Journal of Solids and Structures 43 (2006) 4957-4970

The particular solution of Eq. (18) is

U= a;x]/2 + ayxx; + 233 /2, (30)

7, = eCLk, (31)

171 = &Cp kg — 9C koxy + Cpy[(Kiay + bk )x, + (Kia; + bok )xa), (32)
assuming constant body force, where the coefficients a;,a,and a3 are determined from

KlTénKlal = —p, —f, (33)

Aja; + Cypa, = —b,;ClLk; — 9Cxks, (34)

Aja; + Cypa; = —b,CLk; +9C1k,. (35)

Thus, the general solution of Eq. (18) is

5
u= 2RG{ZUka(Zk)} + ale/2 + a)x1x; + 33x§/2 + ﬁ, (36)

k=1

5
T = 2RC{Z(A4 +ka12)UkF;((Zk>} + 8C11k1 — 19C11k2X2
1

+ Cp[(Kja, + biky)x; + (Kiay + bk )xs), (37)

(K
5
Ty = 2R€{Z A1 +ka22 UkF (Zk>} + SC—lrzkl, (38)
1

in which
U= [—bix2/2 — Oxprs —byd/2+0xixs (x4 byvs +e)xs 0 0]
The complex functions Fy(z;) in Egs. (36)—(38) for a specific problem are to be determined using the pre-
scribed boundary conditions.

4. Electromagnetoelastic field in a half-space

The solution for the problem of an anisotropic elastic half-space under the line loads was given in Sec-
tion 28 of Lekhnitskii (1981). Here we consider the electromagnetoelastic field in a half-space subjected to
line loads and prescribed electromagnetic conditions on the half-space boundary. Lekhnitskii’s solution can
be carried over to the present case in a simple manner without working with the individual equations and
variables.

The mechanical boundary conditions of the problem are

022 :N(Xl), 0'12=T(X1), 0723 =0 on XZ:O, (39)

where N(x;) and 7(x,) are the prescribed normal force and shearing force.

In the absence of electric charges and currents, the electromagnetic boundary conditions require that
either the normal component of the electric charge or the electric potential and either the normal magnetic
flux or the magnetic potential be prescribed on the boundary

either D, = fo(x;) or ¢ =g.(x;) on x, =0, (40)
either B, = fi(x;) or @ =g,(x;) on x, =0, (41)

where fo(x1), fm(x1), g(x1) and gm(x;) are prescribed functions of x;.
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The boundary conditions specified by Eqgs. (39)—(41) expressed in the present context are

73(x1,0) = f(x1), (42)
K,Tz(xl, O) = gt(xl)’Keu(xlv 0) = gu(x1)7 (43)
where

fx)) =[T(x) N@) 0 folx) ful)]',
g(x1))=[T(x1) Nx) 0], g,x)=[gx) gulx)],

00010
o0 0 0 1)

First, we consider the boundary condition given by Eq. (42). Substituting Eq. (38) into Eq. (42) gives

2Re{ ZS:(AI + 2 Co)UeF ) (x1) } =1(x;) — eCl k. (44)

k=1

Applying the Cauchy integral formula of analytic functions in a half plane (Lekhnitskii, 1981) to Eq. (44)
yields a system of five linear algebraic equations for the five unknown F;(z) as follows:

> 1 ™ f(x) —eChk
Z(A1 + 2 Con)UpFi(z) = — — del, (45)

— 2ni X, —z

Next, we consider the boundary condition given by Eq. (43). Substitution of Egs. (36) and (38) in Eq.
(43) gives

ZRC{ES:Kz(Al +ka22)UkF;€(x1)} = h,(xl), (46)
ZRG{ZS:KeUka(xl)} = hu(xl), (47)
where

h(xi) = g,(n) — eKCpki,  hi(x) = g,(n) — Keax(/2.
Applying the Cauchy integral formula to Eqgs. (46) and (47) yields

> , 1 h,(x
> KA1 +pCo)UiFy(z) = 3 / x;(:idxh (48)
=
: 1 [>h,
ZK UiFi(z / 1) e, (49)
 2mi X —z

Observing that the unknowns in Eq. (48) are F) (z), whereas the unknowns in Eq. (49) are Fi(z), we dif-
ferentiate Eq. (49) with respect to z to obtain

ZK UF.(z ! hu(x) gy, (50)

27U -0 (Xl - 2)2
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Eq. (48) and (50) constitute a set of five algebraic equations for the five unknowns F(z). Upon solving
for F (z) from Eq. (45) or from Egs. (48) and (50), depending on the boundary condition being considered,
integrating F,(z) with respect to z and replacing the variable z by z;, we obtain the analytic functions Fy(zy)
for the problem. All the field variables follow from Egs. (36)—(38) subsequently.

We note in passing that the displacement boundary condition can be considered in a similar fashion. The
solutions for the elastic and piezoelectric counterparts (Lekhnitskii, 1981; Tarn, 2002c) are reproduced by
setting e;; = ¢; = 0, k = 1-3; and ¢;; = p; = 0, k = 1-4, respectively.

5. Electromagnetoelastic field in a notched plate

Disturbance of the uniform field in an infinite plate by the presence of a notch is a classical problem of
anisotropic elasticity (Savin, 1961; Lekhnitskii, 1981). Here we consider the electromagnetoelastic field in a
notched plate under uniform extension.

When an infinite plate is subjected to uniform extension, the internal field is uniform. In the presence of a
notch, the uniform field is disturbed. The disturbance can be determined by superposing on the uniform
field an internal field derived from an auxiliary problem in which the negative of the traction, the normal
electric displacement, and the normal magnetic flux resulted from the uniform field is prescribed on the
notch contour. The superposition annihilates the loading on the notch boundary and makes the notch free
of external loads, thus producing the solution to the original problem.

Consider the notched plate under uniform extension ¢, in the x; direction at infinity. The mechanical
boundary conditions on the notch boundary are traction-free. The electromagnetic boundary conditions
on the notch boundary are assumed to be electromagnetic insulated such that the normal electric displace-
ment and the normal magnetic flux are zero. The condition at infinity is

en==¢e, & =0(@j#1), ¢ and ¢ =constant. (51)
The uniform field in an infinite plate under uniform extension is

[011 O 033 023 013 0'12]:80[011 Ciz2 Ci13 Ci4 Cis 016]7 (52)
[Di D, Dy Bi By By]=glen en e qn qu g3l (53)

which, in the present context, are given by

T =¢&lcis ¢ i3 en e gy Q31]Ta (54)

1-'2:80[016 Cip Cia ey ‘121]T~ (55)

The auxiliary problem requires that the notch boundary be subjected to

h Ci1 Ci6
cos 0 D, e;; ey |[cosb

h | =—¢&|cCl6 C12 . ) = —& . ) (56)
sin 0 B, gy 49n ) Lsin0

13 C15 Cl4

where #;, D,, and B, denote the traction components, the normal electric displacement, and the normal
magnetic flux, respectively, 6 is the angle measured counter-clockwise between the x;-axis and the outward
normal at a point along the notch boundary.

By using Eqgs. (27)-(29), we can express the traction, the normal electric displacement, and the normal
magnetic flux along the notch contour in terms of the analytic functions as follows:
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5
nmmﬁHK%ﬁim%E}M&+m&ﬂwwm} (57)
5
t2 =N,T) = ZRC{ZHU(AI —‘y—kazz)UkF;{(Zk)}, (58)
5
1 = HJ(KT‘EI —|—K4‘L'2 G{Zna A6 —|—pkA7 UkF (Zk)} (59)
5
D = ne(KTrl + K 1,'2 ZRe{Zne Ag +pkA9 UkF (Zk)} (60)
k=1
5
B (KT‘El + K 172 2Re{2ne A10 -l—pkA“)UkF (Zk)} (61)
k=1
where
00 00000 00 00O0O0O
000000 000 0O0O0TO
K = 00100O0|, Kk=[00O0O0TO0TO0 O],
000000 000 00O0T1O0O0
LOO O 0O 00O 000 0O0O0O
00 0 0 0 00000
00000 00000
Ki=10 0 00 0|, Kg=[0 0 0 0 0],
00010 00000
LO O 0 0 0 000 0 1

n, =[cos sinf 0 O O], n.=[0 O O cosf sind],

As =K[Cp +K;Cpn, Ag=K A +K A,

A=K Cn +K,;Cn, As=KiA,+KJA,

Ao =KiCp +KiCn, A =KjAs+KZA;, A =K;Cpy + Kz Con.

In order to use the boundary conditions to determine the analytic functions for the auxiliary problem,
the notch boundary must be expressed properly in terms of the complex variables. This hinges on the exis-
tence of the conformal mapping functions that transform the exterior of the notch onto the exterior of a
unit circle for all the complex variables z;, & = 1-5. It has been shown (Wang and Tarn, 1993) that the con-
formal mapping in the entire region outside the unit circle is possible only for an elliptic hole in an aniso-
tropic elastic medium. In the present case, the contour of the elliptic hole is transformed onto a unit circle
by

zr = m &y + mké;17 (62)
where

my = (a—ipb)/2, my; = (a+ipb)/2.



4968 J.-Q. Tarn, W.Q. Chen [ International Journal of Solids and Structures 43 (2006) 4957-4970

The inverse relation of Eq. (62) is

Zy + (Z,% — 4mkr7zk)l/2
& o (63)
The mapping functions map the exterior of an ellipse
x X3 .
a—;—kb—g:l, x; =acosl, x,=hbsin0 (64)

for all z; in the z plane onto the exterior of a unit circle: £ = &, = ¢ in the ¢ plane, making it possible for us
to use the Cauchy integral formula to determine the analytic functions for the problem.

Upon imposing Eq. (56) on Egs. (57)—(61), multiplying both sides of the equations by (2zi) 'dé/(¢ — z),
integrating them clockwise around the unit circle, applying the Cauchy integral formula of analytic func-
tions for a unit circle in the ¢ plane and using

Pl =R S & pe, (65)

dz; mily — mkgk
there follows:

& m c11cosl + cigsin 0

5
> 1 (As + pAs)UiFi(z) = =~ T ¢'do, (66)
= T Jo € z

5ot , & [ c16c0s 0+ cppsin @ 0
> (A4 pCn)UiFy(z) = — = = e’do, (67)
T 0 e’ —z
5 2n :
& c15¢08 0+ ciysin
>0l (As + pA)UF(2) = -2 / e, (68)
k=1 T Jo € z
5 2r :
& e11cosl+eysind
WA+ pAUFY () = =2 [ R TEeSR  dngg (69)
= T Jo € z
5 2r :
0 0 .
1 (Aw + pAn)UiF(z) = & / 41, €Os '9+ g5y SIN e’do, (70)
= T Jo eV —z
where
z 14z 0
i(zfl —z) 0
I —r— 0 I e ———" 0
7 (mz — iz T (myz — gz
(mez ) 0 (miz @) z 4z
0 i(z7!'—2z)

Eqs. (66)—(70) are five linear algebraic equations for the five unknowns F;(z). After solving F(z) and
integrating it with respect to z and replacing z by z;, we obtain the analytic functions Fy(z;) for the auxiliary
problem. The auxiliary internal field are determined by substituting Fy(z) into Egs. (27)—(29).

Superposition of the uniform field and the auxiliary internal field yields the electromagnetoelastic field in
the infinite plate containing an elliptic notch

5
T = 80[6‘15 Cl1 C13 €11 €3] q“ q31]T+2Re{Z(A4 +ka12)UkF],((Zk)}, (71)

k=1

5
T, =¢[Cl6 Ci2 Ciu €1 ¢y —&—ZRe{Z A + pCn)UF, (Zk)} (72)
=1
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Again, by setting ¢; = ¢; =0, k = 1-3, and ¢;; = u; = 0, k = 1-4, respectively, the solutions of the associ-
ated problems of anisotropic elasticity (Lekhnitskii, 1981) and piezoelectricity (Tarn, 2002¢) are recovered.

In closing, we note that a series solution for the problem may be found, following the same line as given
in Lekhnitskii (1981), by representing the analytic functions in the exterior of a unit circle in the & plane in
the form of Laurent’s series

Fi(&) =biné+) anc™, &=¢", (73)

n=0

in which b and a,; are determined by comparing the coefficients on both sides of the algebraic equations
resulting from the notch boundary conditions.

6. Concluding remarks

We have formulated the basic equations of static electromagnetoelasticity in the state space setting and
derived a state equation and an output equation that bear a remarkable resemblance to their elastic coun-
terparts, making it possible to solve various stationary problems of electromagnetoelasticity in parallel to
the associated problems of anisotropic elasticity. For illustration, we have determined the exact solutions
for two classes of problems by simple extension of the corresponding elastic solutions. Other problems of
electromagnetoelasticity can be treated as well following the same line.

The connection between static electromagnetoelasticity and anisotropic elasticity has been found by
grouping the field variables properly and partitioning the constitutive matrix accordingly. In the formula-
tion we have grouped the field variables in such a manner that the derivatives with respect to x, are taken to
the left-hand side of the state equation. The way of grouping is not unique. For other groupings the forms
of the state equation and output equation remain unchanged, only the matrices C,; and K; need to be rede-
fined. It has been shown in the state space formalism for anisotropic elasticity (Tarn, 2002a) that an alter-
native formulation based on grouping the stresses into inplane and antiplane components results in a state
equation and an output equation different in form but same in effect. The statement stands in the present
case.
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